Hoa Hải Đường Dt

Hoa Hải Đường Dt

Hoa thu hải đường – Đà Lạt Hasfarm luôn nằm trong danh mục hoa bán nhiều nhất tại vườn cây cảnh Đà Nẵng Hoa Sen Việt trong nhiều năm vừa qua. Hoa thu hải đường đẹp tuyệt vời từ cái tên gọi cho đến hình dáng, màu sắc cùng ý nghĩa rất hay. Ở bài viết này, chúng ta sẽ cùng tìm hiểu về hoa thu hải đường – Đà Lạt Hasfarm, đặc điểm, giá bán, ý nghĩa, cách trồng và chăm sóc cây hoa thu hải đường – Đà Lạt Hasfarm.

Hoa thu hải đường – Đà Lạt Hasfarm luôn nằm trong danh mục hoa bán nhiều nhất tại vườn cây cảnh Đà Nẵng Hoa Sen Việt trong nhiều năm vừa qua. Hoa thu hải đường đẹp tuyệt vời từ cái tên gọi cho đến hình dáng, màu sắc cùng ý nghĩa rất hay. Ở bài viết này, chúng ta sẽ cùng tìm hiểu về hoa thu hải đường – Đà Lạt Hasfarm, đặc điểm, giá bán, ý nghĩa, cách trồng và chăm sóc cây hoa thu hải đường – Đà Lạt Hasfarm.

Cách dạng bài tập tính góc trong không gian oxyz: 2 mặt phẳng, 2 đường thẳng, dt và mp

Gọi $\varphi $ là góc giữa 2 mặt phẳng (P) và (Q) ta có:

$\cos \varphi =\left| \cos \left( \overrightarrow{{{n}_{(P)}}};\overrightarrow{{{n}_{Q}}} \right) \right|=\frac{\left| A.A'+B.B'+C.C' \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}.\sqrt{A{{'}^{2}}+B{{'}^{2}}+C{{'}^{2}}}}({{0}^{o}}\le \varphi ,9{{0}^{o}})$

Cho 2 đường thẳng ${{d}_{1}}$ có vecto chỉ phương $\overrightarrow{{{u}_{1}}}=({{a}_{1}};{{b}_{1}};{{c}_{2}})$và đường thẳng ${{d}_{2}}$ có vecto chỉ phương $\overrightarrow{{{u}_{2}}}=({{a}_{2}};{{b}_{2}};{{c}_{2}})$. Góc $\varphi $ giữa hai đường thẳng đó được tính theo công thức

$\cos \varphi =\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}+{{c}_{1}}{{c}_{2}} \right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}.\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}({{0}^{o}}\le \varphi ,9{{0}^{o}})$

Bài tập trắc nghiệm về góc trong không gian có đáp án chi tiết

Bài tập 1: Cho hai mặt phẳng $(P):2x-y-2z-5=0$ và $(Q):x-y+1=0$. Góc giữa hai mặt phẳng (P) và (Q) là:

A. ${{30}^{o}}.$ B. ${{45}^{o}}.$ C. ${{60}^{o}}.$ D. ${{135}^{o}}.$

Ta có: $\overrightarrow{{{n}_{(P)}}}=\overrightarrow{{{n}_{1}}}=(2;-1;-2);\overrightarrow{{{n}_{(Q)}}}=\overrightarrow{{{n}_{2}}}=(1;-1;0)$

Khi đó: $\cos \left( (P);(Q) \right)=\left| \cos \left( \overrightarrow{{{n}_{1}}};\overrightarrow{{{n}_{2}}} \right) \right|=\frac{\left| 2.1+2-2.0 \right|}{\sqrt{4+1+4}.\sqrt{2}}=\frac{3}{3\sqrt{2}}=\frac{1}{\sqrt{2}}\Rightarrow \widehat{\left( (P);(Q) \right)}={{45}^{0}}$

Bài tập 2: Cho hai mặt phẳng $(P):2x-y+2z-1=0$ và $(Q):x+2y-z+3=0$. Gọi $\alpha $ là góc giữa hai mặt phẳng (P) và (Q) khi đó $\cos \alpha $ bằng

A. $-\frac{\sqrt{6}}{9}.$ B. $\frac{-2\sqrt{5}}{15}.$ C. $\frac{2\sqrt{5}}{15}.$ D. $\frac{\sqrt{6}}{9}.$

Ta có $\overrightarrow{{{n}_{(P)}}}=\overrightarrow{{{n}_{1}}}=(2;-1;2);\overrightarrow{{{n}_{(Q)}}}=\overrightarrow{{{n}_{2}}}=(1;2;-1)$

Khi đó: $\cos \alpha =\left| \cos \left( \overrightarrow{{{n}_{1}}};\overrightarrow{{{n}_{2}}} \right) \right|=\frac{\left| 2-2-2 \right|}{\sqrt{4+1+4}.\sqrt{1+4+1}}=\frac{2}{3\sqrt{6}}=\frac{\sqrt{6}}{9}.$

Bài tập 3: Cho hai mặt phẳng $(P):mx+2y+mz-12=0$ và $(Q):x+my+z+3=0$. Có bao nhiêu giá trị của m sao cho góc giữa hai mặt phẳng $(P)$ và (Q) bằng ${{45}^{o}}$

Ta có: $\overrightarrow{{{n}_{(P)}}}=\overrightarrow{{{n}_{1}}}=(m;2;m);\overrightarrow{{{n}_{(Q)}}}=\overrightarrow{{{n}_{2}}}=(1;m;1)$

Khi đó: $\cos {{45}^{o}}=\left| \cos \left( \overrightarrow{{{n}_{1}}};\overrightarrow{{{n}_{2}}} \right) \right|=\frac{\left| m+2m+m \right|}{\sqrt{2{{m}^{2}}+4}.\sqrt{{{m}^{2}}+2}}=\frac{4\left| m \right|}{\sqrt{2}\left( {{m}^{2}}+2 \right)}$

$\Leftrightarrow \frac{\sqrt{2}}{2}=\frac{4\left| m \right|}{\sqrt{2}({{m}^{2}}+2)}\Leftrightarrow {{m}^{2}}+2=4\left| m \right|\xrightarrow{t=\left| m \right|>0}{{t}^{2}}-4t+2=0\Rightarrow t=2\pm \sqrt{2}\Rightarrow m=\pm \sqrt{2\pm \sqrt{2}}$

Bài tập 4: Cho hai mặt phẳng $(P):4x+my+mz+1=0$ và $(Q):x-y-3=0$. Có bao nhiêu giá trị của m sao cho góc giữa hai mặt phẳng $(P)$ và (Q) bằng ${{60}^{o}}$

Ta có $\overrightarrow{{{n}_{(P)}}}=\overrightarrow{{{n}_{1}}}=(4;m;m);\overrightarrow{{{n}_{(Q)}}}=\overrightarrow{{{n}_{2}}}=(1;-1;0)$

Khi đó: $\cos {{60}^{o}}=\left| \cos \left( \overrightarrow{{{n}_{1}}};\overrightarrow{{{n}_{2}}} \right) \right|=\frac{\left| 4-m \right|}{\sqrt{2{{m}^{2}}+16}.\sqrt{2}}=\frac{\left| 4-m \right|}{2\sqrt{{{m}^{2}}+8}}$

$\Leftrightarrow \frac{1}{2}=\frac{\left| 4-m \right|}{2\sqrt{{{m}^{2}}+8}}\Leftrightarrow {{m}^{2}}+8={{(4-m)}^{2}}\Leftrightarrow 8=16-8m\Leftrightarrow m=1$

Bài tập 5: Cho 2 đường thẳng ${{d}_{1}}:\frac{x}{-1}=\frac{y+1}{4}=\frac{z}{3}$ và ${{d}_{2}}:\frac{x}{1}=\frac{y+1}{-4}=\frac{z+2}{-3}$. Góc giữa ${{d}_{1}}$ và ${{d}_{2}}$ là:

A. ${{0}^{o}}.$ B. ${{30}^{o}}.$ C. ${{60}^{o}}.$ D. ${{90}^{o}}.$

$\overrightarrow{{{u}_{1}}}=(-1;4;3);\overrightarrow{{{u}_{2}}}=(1;-4;-3)\Rightarrow \cos ({{d}_{1}};{{d}_{2}})=\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| -26 \right|}{\sqrt{1+16+9}.\sqrt{1+16+9}}=1.$

Do đó $\widehat{\left( {{d}_{1}};{{d}_{2}} \right)}={{0}^{o}}.$

Bài tập 6: Cho 2 đường thẳng ${{d}_{1}}:\left\{ \begin{align} & x=t \\ & y=5-2t \\ & z=14-3t \\ \end{align} \right.$ và ${{d}_{2}}:\left\{ \begin{align} & x=1-4t \\ & y=2+t \\ & z=-1+5t \\ \end{align} \right.$. Góc giữa ${{d}_{1}}$ và ${{d}_{2}}$ là:

A. ${{0}^{o}}.$ B. ${{30}^{o}}.$ C. ${{60}^{o}}.$ D. ${{90}^{o}}.$

$\overrightarrow{{{u}_{1}}}=(1;-2;3);\overrightarrow{{{u}_{2}}}=(-4;1;5)\Rightarrow \cos ({{d}_{1}};{{d}_{2}})=\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| -4-2-15 \right|}{\sqrt{1+4+9}.\sqrt{16+1+25}}=\frac{21}{14\sqrt{3}}=\frac{\sqrt{3}}{2}.$

Suy ra $\widehat{\left( {{d}_{1}};{{d}_{2}} \right)}={{30}^{o}}.$

Bài tập 7: Cho 4 điểm $A(1;0;0);\,B(0;1;0);\,C(0;0;1)$ và $D(-2;1;-1)$. Góc giữa 2 đường thẳng AB và CD là:

A. ${{45}^{o}}.$ B. ${{30}^{o}}.$ C. ${{60}^{o}}.$ D. ${{90}^{o}}.$

Ta có: $\overrightarrow{{{u}_{AB}}}=\overrightarrow{{{u}_{1}}}=(-1;1;0);\overrightarrow{{{u}_{CD}}}=\overrightarrow{{{u}_{2}}}=(-2;1;-2)$

Khi đó: $\cos \left( \widehat{AB;CD} \right)=\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| 2+1 \right|}{\sqrt{2}.3}=\frac{1}{\sqrt{2}}\Rightarrow \left( \widehat{AB;CD} \right)={{45}^{o}}.$

Bài tập 8: Cho 2 đường thẳng ${{d}_{1}}:\frac{x-1}{2}=\frac{y}{2}=\frac{z+1}{-1}$ và ${{d}_{2}}:\frac{x+1}{1}=\frac{y-2}{-2}=\frac{z+3}{1}$. Cosin góc giữa ${{d}_{1}}$ và ${{d}_{2}}$ là:

A. $\frac{\sqrt{6}}{3}.$ B. $\frac{\sqrt{3}}{2}.$ C. $\frac{1}{\sqrt{6}}.$ D.$\frac{1}{\sqrt{2}}.$

Ta có: $\overrightarrow{{{u}_{1}}}=(2;2;-1);\overrightarrow{{{u}_{2}}}=(1;-2;1)\Rightarrow cos\left( {{d}_{1}};{{d}_{2}} \right)=\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| 2-4-1 \right|}{3.\sqrt{6}}=\frac{3}{3\sqrt{6}}=\frac{1}{\sqrt{6}}.$

Suy ra $\left( \widehat{{{d}_{1}};{{d}_{2}}} \right)={{30}^{o}}.$

Bài tập 9: Cho hai đường thẳng ${{d}_{1}}:\left\{ \begin{align} & x=-1+t \\ & y=-t\sqrt{2} \\ & z=2+t \\ \end{align} \right.$ và ${{d}_{2}}:\left\{ \begin{align} & x=2+t \\ & y=1+t\sqrt{2} \\ & z=2+mt \\ \end{align} \right.$. Tìm giá trị của m sao cho góc giữa ai đường thẳng ${{d}_{1}}$ và ${{d}_{2}}$ bằng ${{60}^{o}}.$

A. $m=1.$ B. $m=-1.$ C.$m=1$ và $m=-1.$ D.$m=0.$

Ta có: $\overrightarrow{{{u}_{1}}}=(1;-\sqrt{2};1);\overrightarrow{{{u}_{2}}}=(1;\sqrt{2};m)\Rightarrow \cos \left( {{d}_{1}};{{d}_{2}} \right)=\left| \cos \left( \overrightarrow{{{u}_{1}}};\overrightarrow{{{u}_{2}}} \right) \right|=\frac{\left| 1-2+m \right|}{2.\sqrt{{{m}^{2}}+3}}=\frac{\left| m-1 \right|}{2.\sqrt{{{m}^{2}}+3}}$

Do $\left( \widehat{{{d}_{1}};{{d}_{2}}} \right)={{60}^{o}}\Rightarrow \cos {{60}^{o}}=\frac{\left| m-1 \right|}{2\sqrt{{{m}^{2}}+3}}\Leftrightarrow \frac{\left| m-1 \right|}{2.\sqrt{{{m}^{2}}+3}}=\frac{1}{2}.$

$\Leftrightarrow \left| m-1 \right|=\sqrt{{{m}^{2}}+3}\Leftrightarrow {{m}^{2}}-2m+1={{m}^{2}}+3\Leftrightarrow m=-1.$

Bài tập 10: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $\left( \alpha \right):x-y+2z+1=0$ và đường thẳng $\Delta :\frac{x}{1}=\frac{y}{2}=\frac{z-1}{-1}.$ Góc giữa đường thẳng $\Delta $ và mặt phẳng $(\alpha )$ bằng

A. ${{150}^{o}}.$ B. ${{60}^{o}}.$ C. ${{30}^{o}}.$ D.${{120}^{o}}.$

Ta có$\overrightarrow{{{n}_{\alpha }}}=(1;-1;2);\overrightarrow{{{u}_{\Delta }}}=(1;2;-1)\Rightarrow \sin \left( \widehat{(\alpha );\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{\alpha }}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 1-2-2 \right|}{\sqrt{6}.\sqrt{6}}=\frac{1}{2}\Rightarrow \left( \widehat{\left( \alpha \right);\Delta } \right)={{30}^{o}}.$

Bài tập 11: Cho đường thẳng $d:\left\{ \begin{align} & x=6+5t \\ & y=2+t \\ & z=1 \\ \end{align} \right.$ và mặt phẳng $(P):3x-2y+1=0.$ Góc hợp giữa đường thẳng d và mặt phẳng (P) là:

A. ${{30}^{o}}.$ B. ${{45}^{o}}.$ C. ${{60}^{o}}.$ D. ${{90}^{o}}.$

Ta có $\overrightarrow{{{n}_{(P)}}}=(3;-2;0);\overrightarrow{{{u}_{d}}}=(5;1;0)\Rightarrow sin\left( \widehat{(P);\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{(P)}}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 15-2 \right|}{\sqrt{13}.\sqrt{26}}=\frac{1}{\sqrt{2}}\Rightarrow \left( \widehat{(P);\Delta } \right)={{45}^{o}}.$

Bài tập 12: Cho đường thẳng $d:\frac{x-3}{2}=\frac{y-2}{1}=\frac{z}{1}$ và mặt phẳng $(P):3x+4y+5z+8=0.$ Góc hợp giữa đường thẳng d và mặt phẳng (P) là:

A. ${{30}^{o}}.$ B. ${{45}^{o}}.$ C. ${{60}^{o}}.$ D. ${{90}^{o}}.$

Ta có $\overrightarrow{{{n}_{(P)}}}=(3;4;5);\overrightarrow{{{u}_{d}}}=(2;1;1)\Rightarrow \sin \left( \widehat{(P);\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{(P)}}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 6+4+5 \right|}{\sqrt{6}.\sqrt{50}}=\frac{\sqrt{3}}{2}\Rightarrow \left( \widehat{(P);\Delta } \right)={{60}^{o}}.$

Bài tập 13: Cho đường thẳng $d:\frac{x+1}{2}=\frac{y}{-1}=\frac{z-3}{1}$ và mặt phẳng $(P):3x-2y+5z+3=0.$ Gọi $\alpha $ là góc giữa đường thẳng d và mặt phẳng (P) khi đó $\sin \alpha $ bằng

A. $\frac{13}{2\sqrt{57}}.$ B. $\frac{13}{\sqrt{57}}.$ C. $\frac{13}{\sqrt{75}}.$ D. $\frac{13}{2\sqrt{75}}.$

Ta có $\overrightarrow{{{n}_{(P)}}}=(3;-2;5);\overrightarrow{{{u}_{d}}}=(2;-1;1)\Rightarrow \sin \left( \widehat{(P);\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{(P)}}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 6+2+5 \right|}{\sqrt{38}.\sqrt{6}}=\frac{13}{2\sqrt{57}}.$

Bài tập 14: Trong không gian tọa độ Oxyz cho đường thẳng $d:\frac{x}{1}=\frac{y-1}{-1}=\frac{z+2}{-2}$ và mặt phẳng $(P):2x+y-z+5=0.$ Góc giữa $d$ và (P) là:

A. ${{60}^{o}}.$ B. ${{45}^{o}}.$ C. ${{30}^{o}}.$ D. ${{150}^{o}}.$

Ta có $\overrightarrow{{{n}_{(P)}}}=(2;1;-1);\overrightarrow{{{u}_{d}}}=(1;-1;-2)\Rightarrow \sin \left( \widehat{(P);\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{(P)}}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 2-1+2 \right|}{\sqrt{6}.\sqrt{6}}=\frac{1}{2}.$

Suy ra $\left( \widehat{(P);\Delta } \right)={{30}^{o}}.$

Bài tập 15: Cho đường thẳng $d:\frac{x-1}{3}=\frac{y-1}{4}=\frac{z}{5}$ và mặt phẳng $(P):2x+my+mz-1=0.$ Gọi $\alpha $ là góc giữa đường thẳng d và mặt phẳng (P). Gọi S là tập hợp các giá trị của m sao cho $\alpha ={{60}^{o}}.$ Tổng các phần tử của tập hợp S là:

A. 0. B. – 19. C. – 18. D. – 20.

Ta có $\overrightarrow{{{n}_{(P)}}}=(2;m;m);\overrightarrow{{{u}_{d}}}=(3;4;5)\Rightarrow \sin \left( \widehat{(P);\Delta } \right)=\left| \cos \left( \widehat{\overrightarrow{{{n}_{(P)}}};\overrightarrow{\Delta }} \right) \right|=\frac{\left| 6+4m+5m \right|}{\sqrt{4+2{{m}^{2}}}.\sqrt{50}}$

$\Leftrightarrow \sin {{60}^{o}}=\frac{\left| 9m+6 \right|}{10\sqrt{{{m}^{2}}+2}}\Leftrightarrow \frac{\sqrt{3}}{2}=\frac{\left| 9m+6 \right|}{10\sqrt{{{m}^{2}}+2}}\Leftrightarrow 3.25\left( {{m}^{2}}+2 \right)=9{{(3m+2)}^{2}}$

$\Leftrightarrow 3(9{{m}^{2}}+12m+4)=25{{m}^{2}}+50\Leftrightarrow 2{{m}^{2}}+36m-38=0\Leftrightarrow \left[ \begin{align} & m=1 \\ & m=-19. \\ \end{align} \right.$

) Góc giữa đường thẳng và mặt phẳng

Cho đường thẳng d có vecto chỉ phương là $\overrightarrow{u}=(a;b;c)$ và mặt phẳng (P) có vecto pháp tuyến là $\overrightarrow{n}(A;B;C)$. Gọi $\varphi $ là góc giữa d và (P) thì $\varphi $ được tính theo công thức

$\sin \varphi =\left| \cos \left( \overrightarrow{u};\overrightarrow{n} \right) \right|=\frac{\left| A.a+B.b+C.c \right|}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}.\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}}({{0}^{o}}\le \varphi ,9{{0}^{o}})$